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Shape stability of sonoluminescence bubbles: Comparison of theory to experiments
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Single bubble sonoluminescen@BSL) is the brief flash of light emitted from a single, stable, acoustically
forced bubble. In experiments, the maximum pressure amplitude with which a bubble may be forced is limited
by considerations of spherical stability. The traditional linear stability analysis predicts a threshold for SBSL at
a much lower pressure amplitude than experimental observations. This work shows that if one constructs an
accurate model of the radial dynamics, the traditional linear stability analysis predicts a boundary that is in
excellent agreement with experimental data.
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I. INTRODUCTION This paper will demonstrate that when one constructs an
accurate model of the radial dynamics the linear stability
A single gas bubble can be levitated in a liquid containeranalysis of then=2 mode agrees with experimental data. A
and forced into violent radial oscillations by an acousticmodel from previous work which involves direct numerical
field: typical of the nonlinear bubble dynamics is a slow simulation(DNS) of the gas dynamics of violent bubble col-
expansion followed by a violent collapse. At high acousticlapses will be used to compute the radial dynamics and sub-
driving the collapse can become violent enough that the rapsequently determine the stability bound&®}. The stability
idly compressed gas is hot enough to emit a brief flash oboundary calculated with the DNS agrees with the experi-
light. This unusual phenomena is known as single bubblgnental data supplied by Ketterliig]. The conclusion of the
sonoluminescence(SBSL). The experimental parameter cyrrent paper is that the inability of traditional analysis to
space where this phenomena is observable is limited by conyccyrately predict the stability boundary is related to the in-
siderations of dissolved gas diffusion, chemical reactionsgpjity of traditional models of radial dynamics to accurately
and spherical shape stability: mapping this parameter spacgntre the damping of the oscillations. This result confirms
was covered in detail by Hilgenfelet al. [1]. This paperis e resuit of Hao and Prosperdi], who also found that the

concerned with the theory used to predict the shape stabilitgtability boundary is very sensitive to the radial dynamics
threshold. '

Plessef 2] analyzed the spherical symmetry of a bubble
undergoing volume oscillations and derived the equations to
predict the evolution of non-spherical disturbances. This
analysis was furthered over the yegsse, e.g., Ref$3,4])
and recently this linear theory was applied to SBSL experi
ments[4—6].

Il. FORMULATION

If one takes the Navier-Stokes equations for the liquid
‘surrounding a bubble and assumes that the liquid is incom-
. . ) pressible (or only “mildly” compressible and that the
mel—rri](?;ia?)riﬁt tv;?]dsga;?eistﬁ?_:!gylécrstj;)?lligs 'Fr)‘a;?nsel‘t'rig?r:‘:"bubble remains spherically symmetric, it is straightforward

y yielg y Y- to derive a nonlinear ordinary differential equatic@DE)

stability is a long-time scale phenomena where the non: . .
spherical perturbations accumulate and grow from onc%(Or the bubble rad|u§. TO make this ODE solvable, one must
now the pressure inside the bubble.

acoustic cycle to the next. Rayleigh-Taylor instability occurs . L
in very violent collapses where the nonspherical perturba- Tr§d|tlonally, one assumes the pressure inside the.bubble
tions do not grow from cycle to cycle but simply become too!S Uniform and that the bubble undergoes a polytropic pro-
large in one collapskL]. The current work is only concerned cess(i.e., isothermal or adiabajicThis assumption directly
with parametric stability, as it is the commonly measuredrelates the gas pressure to the volume, and makes the ODE
threshold in experiments. solvable: this equation is known as the Rayleigh-Plesset
Previous work found that the classical linear stability €quation (RPE. A more accurate model uses a one-
theory underpredicts the experimentally measured stabilitglimensional direct numerical simulation of the gas dynamics
boundary in SBSL. The linear stability theory predicts thatto compute the gas pressure. The DNS solves the complete
the n=2 spherical harmonic shape mode is the most unNavier-Stokes equations of a multispecies gas including
stable, while data on SBSL are found to agree more closelphase change, heat transfer, mass transfer, and chemical re-
with the n=4 mode. This result caused speculation that nonactions. The equations used in the DNS were described in
linear (or other unknowheffects may be important in SBSL detail by Storey and Szef7], and therefore will not be re-
stability [5]. Hao and Prosperetf#], however, showed that peated here. This DNS method was found in the previous
the predicted location of the spherical stability boundary wasvork to produce radial oscillations that agree well with ex-
very sensitive to details of the radial dynamics: stronglyperiments. It is important to realize the two methods are
damped oscillations were found to have a larger stable remodeling the liquid in the same manner: the difference is
gion. that the DNS solves the full equations governing the gas,
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FIG. 1. Radial dynamics from a DNS model and a traditional . FIG. 2. Comparlson of the stabl_e parameter sp@acebient ra-
RPE model. The conditions are a 4.5-micron bubble forced with e{jlus R, and acoustic pressure amplitullg) of the DNS, RPE, and
) : experimental data. The thin line is the stability boundary for the

1.3-atm. pressure amplitude at 32.8 kHz. The top figure is fro . S ;
DNS's, and the bottom figure is from the RPE. The radius is scalg(]fPE‘ while the thick line is the boundary from DNS: bubbles above

by the ambient radius, and time is scaled by the frequency of th
forcing.

he curves are unstable. The experimental data points are a subset of
fhat presented in Fig. 5 of Ketterling and Apfel. The experimental
data are for air only, with the open circles representing stable points

i . and the stars unstable points. Only air data are plotted, since this
whereas the RPE uses a uniform pressure and polytropic ageory will predict slightly different boundaries depending on the

sumption. _ . . _nature of the gas. The linear stability theory using DNS shows
The equations which govern the evolution of nonsphericabycelient agreement with the experimental data.

perturbations on the bubble interface were derived by Plesset

[2], and have since been modified to the form commonly, eyiously shown that such DNS’s provide good agreement
used today4]. The linear stability analysis predicts that the it experimental observations in terms of the radial dynam-
n=2 spherical harmonic mode is the most unstable. Furthgg.q 7 g]. There are other approaches that provided similar
descriptions and derivations of these equations can be fo“rlﬁjampings of radial oscillationg 0].
in numerous referencdd, 1,6 but the equations will not be In Fig. 2 the stability boundaries from the DNS and RPE
repeated here in the interest of brevity. Note that the equatiorhodeb, are compared to experimental data. Note that there
for the non—sphgrical grovyth rate is a function of the radialy g 5 variety of versions of the RPE that are derived with
dynamics[ R(t), R(t), andR(t)] and physical properties of various assumptions and approximations. The form of the
the liquid. RPE used in this work is identical to the one used by Hilgen-
feldt et al. [1], simply for comparison purposes and the
Il RESULTS choice is not important to the result. The thin line on the
' lower part of the graph is the stability boundary computed
In order to compare the DNS model to experiments, theérom the traditional RPE: bubbles above the curve are pre-
recent data of Ketterling and Apf¢b] are modeled. The dicted to be unstable, and bubbles below to be stable. The
liquid temperature and ambient pressure are room conditioniseavy line is the stability boundary computed via the DNS.
(1 atm and 293 K and the frequency of the acoustic forcing The experimental data are the plotted points where the open
is 32.8 kHz. The ambient radius and pressure amplitude areircles are stable and the stars are unstable points. One can
varied to map the parameter space of stable and unstabidearly see that the DNS model agrees very well with the
bubbles. Note that, in experiments, the ambient radius is corexperiments, especially in relation to the RPE model.
trolled by varying the pressure amplitude and the dissolved The original data sef5] included a variety of dissolved
gas concentration. gases, but only data for argon bubbles were plotted in Fig. 2.
In Fig. 1, the radial oscillations for the two modélhe  The identity of the gas influences the radial dynamics, and
DNS and traditional RPE modelsire plotted in order to subsequently has a minor effect on the stability boundary.
highlight the practical difference in the two approaches. RafFor example, helium has much longer-lived afterbounces
dial oscillations from the DNS model are found to dampthan argon: this fact is observed experimentally and seen
much more rapidly when compared to the traditional RPEwith the DNS model. The difference in the afterbounce be-
model with an isothermal assumption. The extra damping irhavior is a direct indication of heat and mass transfer in the
the DNS case is not surprising, since the full simulation acgas influencing the radial dynamics of the bubble. This
counts for transport and dissipation of heat and mass in thehange in the radial dynamics causes the helium stability
bubble, a source of loss for the energy of the collapse. It waboundary to be lowered by 0.25—-0.6m in a pressure am-
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plitude range between 1.2 and 1.5 atm. This minor differenc@eeded to explain the parametric spherical stability limits.
between argon and helium is smaller than current experimen-
tal uncertainty, and thergfore cannot be resolved. IV. CONCLUSIONS
Due to the computational time it takes to calculate one
acoustic cycle with the DNS model, this stability boundary is  The parametric spherical stability of a SBSL bubble was
more coarsely resolved than the boundary computed with thmvestigated with detailed modeling of the gas dynamics in
RPE model. The theoretical stability boundaries can havéhe bubble interior. The DNS model of radial dynamics was
many fine features, but these features are of no practicalompared to traditional RPE simulations, and the DNS pro-
importance as they cannot be measured due to practical linduced radial oscillations that agree well with experiments.
its of experimental uncertainty. Also note that the DNS re-The added damping of the radial oscillations in the DNS
sults only extend to about 1.5 atm of pressure amplitudemodel stabilizes the spherical symmetry of the bubble. The
Above this limit the gas dynamics become so violent thatparameter space diagram of stable and unstable bubbles com-
computing an entire cycle with the current DNS method beputed with the gas dynamics DNS model coupled to the lin-
comes intractable with the current resources. ear stability theory agrees well with the experiments of Ket-
The trend in the numerical result is clear, the more realterling [8].
istic damping in the DNS simulations moves the stability
boundary to larger initial radii for a given pressure ampli- ACKNOWLEDGMENTS
tude. The results from the DNS model are in excellent agree-
ment with the experimental data. This agreement demon- The author would like to thank J. A. Ketterling and A. J.
strates that the linear stability theory is in fact accurate forSzeri for providing many helpful comments. J. A. Ketterling
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