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Shape stability of sonoluminescence bubbles: Comparison of theory to experiments

Brian D. Storey
Franklin W. Olin College of Engineering, 1735 Great Plain Avenue, Needham, Massachusetts 02492

~Received 26 February 2001; published 28 June 2001!

Single bubble sonoluminescence~SBSL! is the brief flash of light emitted from a single, stable, acoustically
forced bubble. In experiments, the maximum pressure amplitude with which a bubble may be forced is limited
by considerations of spherical stability. The traditional linear stability analysis predicts a threshold for SBSL at
a much lower pressure amplitude than experimental observations. This work shows that if one constructs an
accurate model of the radial dynamics, the traditional linear stability analysis predicts a boundary that is in
excellent agreement with experimental data.
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I. INTRODUCTION

A single gas bubble can be levitated in a liquid contain
and forced into violent radial oscillations by an acous
field: typical of the nonlinear bubble dynamics is a slo
expansion followed by a violent collapse. At high acous
driving the collapse can become violent enough that the
idly compressed gas is hot enough to emit a brief flash
light. This unusual phenomena is known as single bub
sonoluminescence~SBSL!. The experimental paramete
space where this phenomena is observable is limited by
siderations of dissolved gas diffusion, chemical reactio
and spherical shape stability: mapping this parameter sp
was covered in detail by Hilgenfeldtet al. @1#. This paper is
concerned with the theory used to predict the shape stab
threshold.

Plesset@2# analyzed the spherical symmetry of a bubb
undergoing volume oscillations and derived the equation
predict the evolution of non-spherical disturbances. T
analysis was furthered over the years~see, e.g., Refs.@3,4#!
and recently this linear theory was applied to SBSL exp
ments@4–6#.

There are two shape stability thresholds in SBSL: pa
metric stability and Rayleigh-Taylor stability. Parametric i
stability is a long-time scale phenomena where the n
spherical perturbations accumulate and grow from o
acoustic cycle to the next. Rayleigh-Taylor instability occu
in very violent collapses where the nonspherical pertur
tions do not grow from cycle to cycle but simply become t
large in one collapse@1#. The current work is only concerne
with parametric stability, as it is the commonly measur
threshold in experiments.

Previous work found that the classical linear stabil
theory underpredicts the experimentally measured stab
boundary in SBSL. The linear stability theory predicts th
the n52 spherical harmonic shape mode is the most
stable, while data on SBSL are found to agree more clos
with the n54 mode. This result caused speculation that n
linear ~or other unknown! effects may be important in SBS
stability @5#. Hao and Prosperetti@4#, however, showed tha
the predicted location of the spherical stability boundary w
very sensitive to details of the radial dynamics: stron
damped oscillations were found to have a larger stable
gion.
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This paper will demonstrate that when one constructs
accurate model of the radial dynamics the linear stabi
analysis of then52 mode agrees with experimental data.
model from previous work which involves direct numeric
simulation~DNS! of the gas dynamics of violent bubble co
lapses will be used to compute the radial dynamics and s
sequently determine the stability boundary@7#. The stability
boundary calculated with the DNS agrees with the exp
mental data supplied by Ketterling@8#. The conclusion of the
current paper is that the inability of traditional analysis
accurately predict the stability boundary is related to the
ability of traditional models of radial dynamics to accurate
capture the damping of the oscillations. This result confir
the result of Hao and Prosperetti@4#, who also found that the
stability boundary is very sensitive to the radial dynamics

II. FORMULATION

If one takes the Navier-Stokes equations for the liqu
surrounding a bubble and assumes that the liquid is inc
pressible ~or only ‘‘mildly’’ compressible! and that the
bubble remains spherically symmetric, it is straightforwa
to derive a nonlinear ordinary differential equation~ODE!
for the bubble radius. To make this ODE solvable, one m
know the pressure inside the bubble.

Traditionally, one assumes the pressure inside the bu
is uniform and that the bubble undergoes a polytropic p
cess~i.e., isothermal or adiabatic!. This assumption directly
relates the gas pressure to the volume, and makes the
solvable: this equation is known as the Rayleigh-Ples
equation ~RPE!. A more accurate model uses a on
dimensional direct numerical simulation of the gas dynam
to compute the gas pressure. The DNS solves the comp
Navier-Stokes equations of a multispecies gas includ
phase change, heat transfer, mass transfer, and chemic
actions. The equations used in the DNS were describe
detail by Storey and Szeri@7#, and therefore will not be re-
peated here. This DNS method was found in the previ
work to produce radial oscillations that agree well with e
periments. It is important to realize the two methods a
modeling the liquid in the same manner: the difference
that the DNS solves the full equations governing the g
©2001 The American Physical Society01-1
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whereas the RPE uses a uniform pressure and polytropic
sumption.

The equations which govern the evolution of nonspher
perturbations on the bubble interface were derived by Ple
@2#, and have since been modified to the form commo
used today@4#. The linear stability analysis predicts that th
n52 spherical harmonic mode is the most unstable. Fur
descriptions and derivations of these equations can be fo
in numerous references@4,1,6# but the equations will not be
repeated here in the interest of brevity. Note that the equa
for the non-spherical growth rate is a function of the rad
dynamics@R(t), Ṙ(t), andR̈(t)] and physical properties o
the liquid.

III. RESULTS

In order to compare the DNS model to experiments,
recent data of Ketterling and Apfel@5# are modeled. The
liquid temperature and ambient pressure are room condit
~1 atm and 293 K!, and the frequency of the acoustic forcin
is 32.8 kHz. The ambient radius and pressure amplitude
varied to map the parameter space of stable and uns
bubbles. Note that, in experiments, the ambient radius is c
trolled by varying the pressure amplitude and the dissol
gas concentration.

In Fig. 1, the radial oscillations for the two models~the
DNS and traditional RPE models! are plotted in order to
highlight the practical difference in the two approaches. R
dial oscillations from the DNS model are found to dam
much more rapidly when compared to the traditional R
model with an isothermal assumption. The extra damping
the DNS case is not surprising, since the full simulation
counts for transport and dissipation of heat and mass in
bubble, a source of loss for the energy of the collapse. It

FIG. 1. Radial dynamics from a DNS model and a tradition
RPE model. The conditions are a 4.5-micron bubble forced wit
1.3-atm. pressure amplitude at 32.8 kHz. The top figure is fr
DNS’s, and the bottom figure is from the RPE. The radius is sca
by the ambient radius, and time is scaled by the frequency of
forcing.
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previously shown that such DNS’s provide good agreem
with experimental observations in terms of the radial dyna
ics @7,9#. There are other approaches that provided sim
dampings of radial oscillations@10#.

In Fig. 2 the stability boundaries from the DNS and RP
models, are compared to experimental data. Note that t
are a variety of versions of the RPE that are derived w
various assumptions and approximations. The form of
RPE used in this work is identical to the one used by Hilge
feldt et al. @1#, simply for comparison purposes and th
choice is not important to the result. The thin line on t
lower part of the graph is the stability boundary comput
from the traditional RPE: bubbles above the curve are p
dicted to be unstable, and bubbles below to be stable.
heavy line is the stability boundary computed via the DN
The experimental data are the plotted points where the o
circles are stable and the stars are unstable points. One
clearly see that the DNS model agrees very well with
experiments, especially in relation to the RPE model.

The original data set@5# included a variety of dissolved
gases, but only data for argon bubbles were plotted in Fig
The identity of the gas influences the radial dynamics, a
subsequently has a minor effect on the stability bounda
For example, helium has much longer-lived afterboun
than argon: this fact is observed experimentally and s
with the DNS model. The difference in the afterbounce b
havior is a direct indication of heat and mass transfer in
gas influencing the radial dynamics of the bubble. T
change in the radial dynamics causes the helium stab
boundary to be lowered by 0.25–0.5mm in a pressure am

l
a

d
e

FIG. 2. Comparison of the stable parameter space~ambient ra-
diusR0 and acoustic pressure amplitudePA) of the DNS, RPE, and
experimental data. The thin line is the stability boundary for t
RPE, while the thick line is the boundary from DNS: bubbles abo
the curves are unstable. The experimental data points are a sub
that presented in Fig. 5 of Ketterling and Apfel. The experimen
data are for air only, with the open circles representing stable po
and the stars unstable points. Only air data are plotted, since
theory will predict slightly different boundaries depending on t
nature of the gas. The linear stability theory using DNS sho
excellent agreement with the experimental data.
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plitude range between 1.2 and 1.5 atm. This minor differe
between argon and helium is smaller than current experim
tal uncertainty, and therefore cannot be resolved.

Due to the computational time it takes to calculate o
acoustic cycle with the DNS model, this stability boundary
more coarsely resolved than the boundary computed with
RPE model. The theoretical stability boundaries can h
many fine features, but these features are of no prac
importance as they cannot be measured due to practical
its of experimental uncertainty. Also note that the DNS
sults only extend to about 1.5 atm of pressure amplitu
Above this limit the gas dynamics become so violent t
computing an entire cycle with the current DNS method
comes intractable with the current resources.

The trend in the numerical result is clear, the more re
istic damping in the DNS simulations moves the stabil
boundary to larger initial radii for a given pressure amp
tude. The results from the DNS model are in excellent agr
ment with the experimental data. This agreement dem
strates that the linear stability theory is in fact accurate
these violent oscillations, and nonlinear theories are
01730
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needed to explain the parametric spherical stability limits

IV. CONCLUSIONS

The parametric spherical stability of a SBSL bubble w
investigated with detailed modeling of the gas dynamics
the bubble interior. The DNS model of radial dynamics w
compared to traditional RPE simulations, and the DNS p
duced radial oscillations that agree well with experimen
The added damping of the radial oscillations in the DN
model stabilizes the spherical symmetry of the bubble. T
parameter space diagram of stable and unstable bubbles
puted with the gas dynamics DNS model coupled to the
ear stability theory agrees well with the experiments of K
terling @8#.
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